Phyllosilicate Deposits Within Miyamoto Crater

Sandra M. Wiseman¹, R. E. Arvidson¹, J. C. Andrews-Hanna², R.N. Clark³, N. Lanza⁴, D. Des Marais⁵, G. A. Marzo⁵, R. V. Morris⁶, S. Murchie⁷, H. E. Newsom⁴, E. Z. Noe Dobrea⁸, A. M. Ollila⁴, F. Poulet⁹, T. L. Roush⁵, F. P. Seelos⁷, G. A. Swayze³, and the CRISM Science Team

¹ Washington University, Dept of Earth and Planetary Sciences, Saint Louis, MO, USA

² Massachusetts Institute of Technology, Dept of Earth, Atm., Planet. Sci, Cambridge, MA, USA ³U.S. Geological Survey, Denver, CO, USA

⁴ University of New Mexico, Institute of Meteoritics, Albuquerque, NM, USA

⁵NASA Ames Research Center, Moffett Field, CA, USA

⁶NASA Johnson Space Center, Houston, TX, USA

⁷Applied Physics Laboratory, John Hopkins University, Laurel, MD, USA

⁸Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

⁹Institut d' Astrophysique Spatiale, Université Paris-Sud, Orsay, France

Phyllosilicate detections indicated with arrows.

HRSC Prospective View of Miyamoto crater

CRISM MSL CDP

- Systematic development of CRISM analysis products for the MSL candidate landing sites
 - Consistent data processing and product generation provides framework for detailed spectral investigations
- CDP pipeline processing
 - CRISM targeted observations within 0.5° of each candidate ellipse center
 - Simple photometric and atmospheric correction
 - · Includes application of time-dependent empirical atmospheric transmission spectrum
 - Robust data filtering
 - Calculation of hyperspectral summary parameters
 - Includes use of detector wavelength array where appropriate (spectral smile)
 - Evaluation of summary parameter cumulative statistics
 - MSL CDP observation set
 - Site-specific
 - Observation-specific
 - Rendering of browse products (RGB summary parameter composites) and enhanced band composites (RGB and grayscale)
 - Map projection ellipse center projection origin

http://crism.jhuapl.edu/msl_landing_sites/

CRISM CDP Products (F. P. Seelos and O. S. Barnouin-Jha)

blue=BD1900 (hydrated sulfates, clays, or glass)

blue = BD1900nm. (hydrated sulfates, clays, or glass)

CRISM FRT 9C02 and FRT 979C

CRISM FRT 9C02 and FRT 979C

PSP 007124_1765 subset

- Phyllosilicate deposits correspond to in place basal unit
- Phyllosilicates exhumed

Geologic map on HiRISE, produced by Larry Crumpler

CRISM D2300 detections overlain on THEMIS daytime IR. Green → Fe/Mg smectite

Discussion

- Good geologic context
 - Crater floor deposits
 - Older phyllosilicates exhumed
 - Predate formation of plains unit analyzed by MER
 Opportunity rover
- Diversity
 - Phyllosilicate (Fe/Mg smectites) throughout landing ellipse
 - Within basal unit
 - Inverted channel deposits

 fluvial activity
 - Sulfate and hematite plains unit (~40 km from ellipse)
- Preservation potential
 - Smectite clays → GOOD
 - Biomarkers, fossils
 - Depositional environment
- Habitability
 - Geochemical conditions implied by phyllosilicates
 - Evidence for surficial water (inverted channels)